Os seres vivos reagem aos estímulos ambientais. Mudanças nas condições do ambiente, tais como sons, choques, calor e frio, são percebidas pelo organismo, que reage adotando uma postura correspondente ao estímulo. Embora sejam os músculos que respondem aos estímulos, é o tecido nervoso o responsável por sua recepção e escolha da resposta adequada.
O tecido nervoso tem origem ectodérmica, nele a substância intercelular praticamente não existe. Os principais componentes celulares são os neurônios e as células da glia.
As células da glia ou neuroglia são vários tipos celulares relacionados com a sustentação e a nutrição dos neurônios, com a produção de mielina e com a fagocitose.
Os neurônios, ou células nervosas, têm a propriedade de receber e transmitir estímulos nervosos, permitindo ao organismo responder a alteração do meio. Os neurônios são alongados, podendo atingir, em alguns casos, cerca de 1 metro de comprimento, como nos neurônios que se estendem desde nossas costas até o pé. São células formadas por um corpo celular ou pericário, de onde partem dois tipos de prolongamento: dendritos e axônio.
Os dentritos são prolongamentos ramificados da célula especializados em receber estímulos, que também podem ser recebidos pelo corpo celular. O impulso nervoso é sempre transmitido no sentido dendrito – corpo – axônio.
Axônio é uma expansão celular fina, alongada e de diâmetro constante, com ramificações em sua porção final, de modo que o impulso pode ser transmitido simultaneamente a vários destinos. É uma estrutura especializada na transmissão de impulsos nervosos para outros neurônios ou para outros tipos celulares, como as células de órgãos efetores (musculares e glandulares).
Outras células do tecido nervoso
Células de Schwann
Certos tipos de neurônios são envolvidos por células especiais, as células de Schwann. Essas células se enrolam dezenas de vezes em torno do axônio e formam uma capa membranosa, chamada bainha de mielina.
A bainha de mielina atua como um isolamento elétrico e aumenta a velocidade de propagação do impulso nervoso ao longo do axônio.
Na doença degenerativa conhecida como esclerose múltipla, por exemplo, ocorre um deterioração gradual da bainha de mielina, resultando na perda progressiva da coordenação nervosa.
Células da glia
O tecido nervoso apresenta outras células auxiliares que dão suporte ao funcionamento do sistema nervoso: são as células da glia ou gliais. Elas digerem em forma e função, cada uma desempenha um papel diferente na estrutura e no funcionamento do tecido nervoso. Os astrócitos dão suporte mecânico e fornecem alimento à complexa e delicada rede de circuitos nervosos. Os oligodendrócitos desempenham função equivalente à das células de Schwann, formando bainhas protetoras sobre os neurônios que ficam no encéfalo e na medula espinhal. As micróglias são um tipo especializado de macrófago cuja função é fagocitar detritos e restos celulares presentes no tecido nervoso.
Transmissão do impulso nervoso
Em um neurônio, os estímulos se propagam sempre no mesmo sentido: são recebidos pelos dendritos, seguem pelo corpo celular, percorrem o axônio e, da extremidade deste, são passados à célula seguinte (dendrito – corpo celular – axônio). O impulso nervoso que se propaga através do neurônio é de origem elétrica e resulta de alterações nas cargas elétricas das superfícies externa e interna da membrana celular.
A membrana de um neurônio em repouso apresenta-se com carga elétrica positiva do lado externo (voltado para fora da célula) e negativa do lado interno (em contato com o citoplasma da célula). Quando essa membrana se encontra em tal situação, diz-se que está polarizada. Essa diferença de cargas elétricas é mantida pela bomba de sódio e potássio. Assim separadas, as cargas elétricas estabelecem uma energia elétrica potencial através da membrana: o potencial de membrana ou potencial de repouso (diferença entre as cargas elétricas através da membrana).
Quando um estímulo químico, mecânico ou elétrico chega ao neurônio, pode ocorrera alteração da permeabilidade da membrana, permitindo grande entrada de sódio na célula e pequena saída de potássio dela. Com isso, ocorre uma inversão das cargas ao redor dessa membrana, que fica despolarizada gerando um potencial de ação. Essa despolarização propaga-se pelo neurônio caracterizando o impulso nervoso.
Imediatamente após a passagem do impulso, a membrana sofre repolarização, recuperando seu estado de repouso, e a transmissão do impulso cessa.
O estímulo que gera o impulso nervoso deve ser forte o suficiente, acima de determinado valor crítico, que varia entre os diferentes tipos de neurônios, para induzir a despolarização que transforma o potencial de repouso em potencial de ação. Esse é o estímulo limiar. Abaixo desse valor o estímulo só provoca alterações locais na membrana, que logo cessam e não desencadeiam o impulso nervoso.
Qualquer estímulo acima do limiar gera o mesmo potencial de ação que é transmitido ao longo do neurônio. Assim, não existe variação de intensidade de um impulso nervoso em função do aumento do estímulo; o neurônio obedece à regra do “tudo ou nada”.
Dessa forma, a intensidade das sensações vai depender do número de neurônios despolarizados e da frequência de impulsos. Imagine uma queimadura no dedo. Quanto maior a área queimada, maior a dor, pois mais receptores serão estimulados e mais neurônios serão despolarizados.
A transmissão do impulso nervoso de um neurônio a outro ou às células de órgãos efetores é realizada por meio de uma região de ligação especializada denominada sinapse.
O tipo mais comum de sinapse é a química, em que as membranas de duas células ficam separadas por um espaço chamado fenda sináptica.
Na porção terminal do axônio, o impulso nervoso proporciona a liberação das vesículas que contêm mediadores químicos, denominados neuro-transmissores. Os mais comuns são acetilcolina e adrenalina.
Esses neurotransmissores caem na fenda sináptica e dão origem ao impulsos nervosos na célula seguinte. Logo a seguir, os neurotransmissores que estão na fenda sináptica são degradados por enzimas específicas, cessando seus efeitos.
No sistema nervoso, verifica-se que os neurônios dispõem-se diferenciadamente de modo a dar origem a duas regiões com coloração distinta entre si e que podem ser notadas macroscopicamente: a substância cinzenta, onde estão os corpos celulares, e a substância branca, onde estão os axônios. No encéfalo (com exceção do bulbo) a substância cinzenta está localizada externamente em relação a substância branca, e na medula espinha e no bulbo ocorre o inverso.
Os nervos são conjuntos de fibras nervosas organizadas em feixes, unidos por tecidos conjuntivo denso.
Regeneração das fibras nervosas
Assim com as células musculares do coração, os neurônios não se dividem mais depois de diferenciados. Desse modo, se forem destruídos, não são mais repostos. No entanto, os prolongamentos dos neurônios podem, dentro de certos limites, sofrer regeneração, desde que o corpo celular não tenha sido destruído. Quando um axônio é cortado acidentalmente, o que ocorre no caso de ferimentos na pele, a região que fica ligada ao corpo celular é chamada coto proximal, e a que fica separada é chamada coto distal. Este último degenera e é fagocitado pelos macrófagos, que limpam a região lesada. Já o coto próxima cresce e se ramifica. Ao mesmo tempo, células que formam a bainha de mielina do coto distal modificam-se e proliferam, originando colunas celulares que servirão de guia para os ramos que estão crescendo a partir do coto proximal. Quando um desses ramos penetra nessa coluna de células, ele regenera completamente o axônio.
Quando o espaço entre o coto proximal e o distal é muito grande ou quando ocorre uma amputação, os ramos do coto proximal crescem desordenadamente, entrelaçam-se e formam uma estrutura muito sensível à dor, chamada neuroma de amputação.
DÍSSA;)
Nenhum comentário:
Postar um comentário